Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 566
Filtrar
1.
Sci Adv ; 10(18): eadn6537, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701219

RESUMO

In mammals, males and females show marked differences in immune responses. Males are globally more sensitive to infectious diseases, while females are more susceptible to systemic autoimmunity. X-chromosome inactivation (XCI), the epigenetic mechanism ensuring the silencing of one X in females, may participate in these sex biases. We perturbed the expression of the trigger of XCI, the noncoding RNA Xist, in female mice. This resulted in reactivation of genes on the inactive X, including members of the Toll-like receptor 7 (TLR7) signaling pathway, in monocyte/macrophages and dendritic and B cells. Consequently, female mice spontaneously developed inflammatory signs typical of lupus, including anti-nucleic acid autoantibodies, increased frequencies of age-associated and germinal center B cells, and expansion of monocyte/macrophages and dendritic cells. Mechanistically, TLR7 signaling is dysregulated in macrophages, leading to sustained expression of target genes upon stimulation. These findings provide a direct link between maintenance of XCI and female-biased autoimmune manifestations and highlight altered XCI as a cause of autoimmunity.


Assuntos
Autoimunidade , Macrófagos , Receptor 7 Toll-Like , Inativação do Cromossomo X , Animais , Feminino , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Autoimunidade/genética , Camundongos , Masculino , Macrófagos/metabolismo , Macrófagos/imunologia , RNA Longo não Codificante/genética , Transdução de Sinais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia
2.
Proc Natl Acad Sci U S A ; 121(19): e2319569121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38683985

RESUMO

Toll-like receptors (TLRs) are crucial components of the innate immune system. Endosomal TLR7 recognizes single-stranded RNAs, yet its endogenous ssRNA ligands are not fully understood. We previously showed that extracellular (ex-) 5'-half molecules of tRNAHisGUG (the 5'-tRNAHisGUG half) in extracellular vesicles (EVs) of human macrophages activate TLR7 when delivered into endosomes of recipient macrophages. Here, we fully explored immunostimulatory ex-5'-tRNA half molecules and identified the 5'-tRNAValCAC/AAC half, the most abundant tRNA-derived RNA in macrophage EVs, as another 5'-tRNA half molecule with strong TLR7 activation capacity. Levels of the ex-5'-tRNAValCAC/AAC half were highly up-regulated in macrophage EVs upon exposure to lipopolysaccharide and in the plasma of patients infected with Mycobacterium tuberculosis. The 5'-tRNAValCAC/AAC half-mediated activation of TLR7 effectively eradicated bacteria infected in macrophages. Mutation analyses of the 5'-tRNAValCAC/AAC half identified the terminal GUUU sequence as a determinant for TLR7 activation. We confirmed that GUUU is the optimal ratio of guanosine and uridine for TLR7 activation; microRNAs or other RNAs with the terminal GUUU motif can indeed stimulate TLR7, establishing the motif as a universal signature for TLR7 activation. These results advance our understanding of endogenous ssRNA ligands of TLR7 and offer insights into diverse TLR7-involved pathologies and their therapeutic strategies.


Assuntos
Macrófagos , Receptor 7 Toll-Like , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/genética , Humanos , Macrófagos/metabolismo , Macrófagos/imunologia , Ligantes , Mycobacterium tuberculosis/imunologia , RNA de Transferência de Histidina/metabolismo , RNA de Transferência de Histidina/genética , Lipopolissacarídeos
3.
Viruses ; 16(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675965

RESUMO

Epstein-Barr virus (EBV), a Herpesviridae family member, is associated with an increased risk of autoimmune disease development in the host. We previously demonstrated that EBV DNA elevates levels of the pro-inflammatory cytokine IL-17A and that inhibiting Toll-like receptor (TLR) 3, 7, or 9 reduces its levels. Moreover, this DNA exacerbated colitis in a mouse model of inflammatory bowel disease (IBD). In the study at hand, we examined whether inhibition of TLR3, 7, or 9 alleviates this exacerbation. Mice were fed 1.5% dextran sulfate sodium (DSS) water and administered EBV DNA. Then, they were treated with a TLR3, 7, or 9 inhibitor or left untreated. We also assessed the additive impact of combined inhibition of all three receptors. Mice that received DSS, EBV DNA, and each inhibitor alone, or a combination of inhibitors, showed significant improvement. They also had a decrease in the numbers of the pathogenic colonic IL-17A+IFN-γ+ foci. Inhibition of all three endosomal TLR receptors offered no additive benefit over administering a single inhibitor. Therefore, inhibition of endosomal TLRs reduces EBV DNA exacerbation of mouse colitis, offering a potential approach for managing IBD patients infected with EBV.


Assuntos
DNA Viral , Modelos Animais de Doenças , Herpesvirus Humano 4 , Doenças Inflamatórias Intestinais , Glicoproteínas de Membrana , Receptor Toll-Like 9 , Animais , Camundongos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/virologia , Receptor Toll-Like 9/antagonistas & inibidores , Receptor Toll-Like 9/metabolismo , Infecções por Vírus Epstein-Barr/virologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Endossomos/metabolismo , Sulfato de Dextrana , Receptor 3 Toll-Like/metabolismo , Receptor 7 Toll-Like/antagonistas & inibidores , Receptor 7 Toll-Like/metabolismo , Camundongos Endogâmicos C57BL , Interleucina-17/metabolismo , Colite/virologia , Colite/induzido quimicamente , Receptores Toll-Like/metabolismo , Feminino
4.
Cell Mol Life Sci ; 81(1): 110, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429401

RESUMO

Toll-like receptors (TLRs), especially TLR7, play an important role in systemic lupus erythematosus (SLE) pathogenesis. However, the regulatory mechanism underlying the abnormal activation of TLR pathways in patients with SLE has not been elucidated. Notably, accumulating evidence indicates that myeloid-derived suppressor cells (MDSCs) are important regulators of inflammation and autoimmune diseases. Compared with healthy control subjects, patients with SLE have a greater proportion of MDSCs among peripheral blood mononuclear cells (PBMCs); however, the effect of MDSCs on TLR7 pathway activation has not been determined. In the present study, lupus MDSCs significantly promoted TLR7 pathway activation in macrophages and dendritic cells (DCs), exacerbating the imiquimod-induced lupus model. RNA-sequencing analysis revealed significant overexpression of S100 calcium-binding protein A8 (S100A8) and S100A9 in MDSCs from diseased MRL/lpr mice. In vitro and in vivo studies demonstrated that S100A8/9 effectively promoted TLR7 pathway activation and that S100A8/9 deficiency reversed the promoting effect of MDSCs on TLR7 pathway activation in lupus. Mechanistically, MDSC-derived S100A8/9 upregulated interferon gamma (IFN-γ) secretion by macrophages and IFN-γ subsequently promoted TLR7 pathway activation in an autocrine manner. Taken together, these findings suggest that lupus MDSCs promote TLR7 pathway activation and lupus pathogenesis through the S100A8/9-IFN-γ axis. Our study identified an important target for SLE therapy.


Assuntos
Calgranulina A , Calgranulina B , Lúpus Eritematoso Sistêmico , Células Supressoras Mieloides , Animais , Camundongos , Células Dendríticas/metabolismo , Leucócitos Mononucleares/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/patologia , Macrófagos/metabolismo , Camundongos Endogâmicos MRL lpr , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Calgranulina A/metabolismo , Calgranulina B/metabolismo
5.
J Autoimmun ; 145: 103189, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38442677

RESUMO

OBJECTIVES: Monocyte-derived dendritic cells (DCs) are key players in the induction of inflammation, autoreactive T cell activation and loss of tolerance in rheumatoid arthritis (RA), but the precise mechanisms underlying their activation remain elusive. Here, we hypothesized that extracellular microRNAs released in RA synovial fluids may represent a novel, physiological stimulus triggering unwanted immune response via TLR8-expressing DC stimulation. METHODS: Human monocyte-derived DCs were stimulated with a mixture of GU-rich miRNAs upregulated in RA tissues and released in synovial fluids (Ex-miRNAs). Activation of DCs was assessed in terms of NF-κB activation by Western blot, cytokine production by ELISA, T cell proliferation and polarization by allogeneic mixed lymphocyte reaction. DC differentiation into osteoclasts was evaluated in terms of tartrate-resistant acid phosphatase production and formation of resorption pits in dentine slices. Induction of joint inflammation in vivo was evaluated using a murine model of DC-induced arthritis. TLR7/8 involvement was assessed by specific inhibitors. RESULTS: Ex-miRNAs activate DCs to secrete TNFα, induce joint inflammation, start an early autoimmune response and potentiate the differentiation of DCs into aggressive osteoclasts. CONCLUSIONS: This work represents a proof of concept that the pool of extracellular miRNAs overexpressed in RA joints can act as a physiological activator of inflammation via the stimulation of TLR8 expressed by human DCs, which in turn exert arthritogenic functions. In this scenario, pharmacological inhibition of TLR8 might offer a new therapeutic option to reduce inflammation and osteoclast-mediated bone destruction in RA.


Assuntos
Artrite Reumatoide , Diferenciação Celular , Células Dendríticas , MicroRNAs , Osteoclastos , Receptor 7 Toll-Like , Receptor 8 Toll-Like , Humanos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , MicroRNAs/genética , Receptor 8 Toll-Like/metabolismo , Osteoclastos/metabolismo , Osteoclastos/imunologia , Animais , Receptor 7 Toll-Like/metabolismo , Camundongos , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Líquido Sinovial/imunologia , Líquido Sinovial/metabolismo , Células Cultivadas , Feminino , Masculino
6.
J Med Chem ; 67(5): 3321-3338, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38363069

RESUMO

Immunotherapy targeting the toll-like receptor 7 (TLR7) is a promising strategy for cancer treatment. Herein, we describe the design and synthesis of a series of imidazoquinoline-based TLR7 agonists and assess NF-κB pathway activation using HEK-Blue hTLR7 cells to identify the most potent small-molecule TLR7 agonist, SMU-L11 (EC50 = 0.024 ± 0.002 µM). In vitro experiments demonstrated that SMU-L11 specifically activated TLR7, resulting in recruitment of the MyD88 adaptor protein and activation of the NF-κB and MAPK signaling pathways. Moreover, SMU-L11 was found to exert immune-enhancing effects by significantly inducing the secretion of proinflammatory cytokines in murine dendritic cells, macrophages, and human peripheral blood mononuclear cells while promoting M1 macrophage polarization. In vivo studies using a B16-F10 mouse tumor model showed that SMU-L11 significantly enhanced immune cell activation and augmented CD4+ T and CD8+ T-cell proliferation, directly killing tumor cells and inhibiting tumor growth.


Assuntos
Melanoma , Humanos , Animais , Camundongos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , NF-kappa B/metabolismo , Receptor 7 Toll-Like/metabolismo , Microambiente Tumoral , Leucócitos Mononucleares/metabolismo , Adjuvantes Imunológicos/metabolismo
7.
Blood Adv ; 8(3): 667-680, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38113462

RESUMO

ABSTRACT: Chronic graft-versus-host disease (cGVHD) is a debilitating, autoimmune-like syndrome that can occur after allogeneic hematopoietic stem cell transplantation. Constitutively activated B cells contribute to ongoing alloreactivity and autoreactivity in patients with cGVHD. Excessive tissue damage that occurs after transplantation exposes B cells to nucleic acids in the extracellular environment. Recognition of endogenous nucleic acids within B cells can promote pathogenic B-cell activation. Therefore, we hypothesized that cGVHD B cells aberrantly signal through RNA and DNA sensors such as Toll-like receptor 7 (TLR7) and TLR9. We found that B cells from patients and mice with cGVHD had higher expression of TLR7 than non-cGVHD B cells. Using ex vivo assays, we found that B cells from patients with cGVHD also demonstrated increased interleukin-6 production after TLR7 stimulation with R848. Low-dose B-cell receptor (BCR) stimulation augmented B-cell responses to TLR7 activation. TLR7 hyperresponsiveness in cGVHD B cells correlated with increased expression and activation of the downstream transcription factor interferon regulatory factor 5. Because RNA-containing immune complexes can activate B cells through TLR7, we used a protein microarray to identify RNA-containing antigen targets of potential pathological relevance in cGVHD. We found that many of the unique targets of active cGVHD immunoglobulin G (IgG) were nucleic acid-binding proteins. This unbiased assay identified the autoantigen and known cGVHD target Ro-52, and we found that RNA was required for IgG binding to Ro-52. Herein, we find that BCR-activated B cells have aberrant TLR7 signaling responses that promote potential effector responses in cGVHD.


Assuntos
Síndrome de Bronquiolite Obliterante , Ácidos Nucleicos , Humanos , Camundongos , Animais , Receptor 7 Toll-Like/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , RNA , Imunoglobulina G
8.
PeerJ ; 11: e15976, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780385

RESUMO

Rosacea is a chronic inflammatory skin disease originated from damaged skin barrier and innate/adaptive immune dysregulation. Toll-like receptors (TLRs) sense injured skin and initiate downstream inflammatory and immune responses, whose role in rosacea is not fully understood. Here, via RNA-sequencing analysis, we found that the TLR signaling pathway is the top-ranked signaling pathway enriched in rosacea skin lesions, in which TLR7 is highlighted and positively correlated with the inflammation severity of disease. In LL37-induced rosacea-like mouse models, silencing TLR7 prevented the development of rosacea-like skin inflammation. Specifically, we demonstrated that overexpressing TLR7 in keratinocytes stimulates rapamycin-sensitive mTOR complex 1 (mTORC1) pathway via NFκB signaling. Ultimately, TLR7/NFκ B/mTORC1 axis promotes the production of cytokines and chemokines, leading to the migration of CD4+T cells, which are infiltrated in the lesional skin of rosacea. Our report reveals the crucial role of TLR7 in rosacea pathogenesis and indicatesa promising candidate for rosacea treatments.


Assuntos
Dermatite , Rosácea , Receptor 7 Toll-Like , Animais , Camundongos , Dermatite/metabolismo , Inflamação/metabolismo , NF-kappa B/metabolismo , Rosácea/metabolismo , Pele , Receptor 7 Toll-Like/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
9.
Immunol Lett ; 261: 13-16, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37451320

RESUMO

Toll-like receptors (TLR)s are homo- or heterodimeric proteins, whose structure and function were widely described in the antigen presenting cells (APC), such as Dendritic cells (DC). Recently, the expression and the role of TLRs in fighting against pathogens, was described also in NK cells. Their activation and functional properties can be directly and indirectly modulated by agonists for TLRs. In particular CD56bright NK cells subset, that is the most abundant NK cell subset in tissues and tumor microenvironment (TME), was mostly activated in terms of pro-inflammatory cytokine production, proliferation and cytotoxicity, by agonists specific for endosomal TLR8. The interplay between DC and NK, that depends on both cell-to-cell contact and soluble factors such as cytokines, promote both DC maturation and NK cell activation. Based on this concept, a TLR based immunotherapy aimed to activate NK-DC axis, may modulate TME by inducing a pro-inflammatory phenotype, thus improving DC ability to present tumor-associated antigens to T cells, and NK cell cytotoxicity against tumor cells. In this mini-review, we report data of recent literature about TLRs on human NK cells and their application as adjuvant in cancer vaccines or in combined tumor immunotherapy.


Assuntos
Neoplasias , Receptor 8 Toll-Like , Humanos , Receptor 8 Toll-Like/agonistas , Receptores Toll-Like/metabolismo , Células Matadoras Naturais , Imunoterapia , Células Dendríticas , Receptor 7 Toll-Like/metabolismo , Microambiente Tumoral
10.
Front Immunol ; 14: 1128543, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275851

RESUMO

Current evidence suggests that IL-23, IL-6, and TNF-α play pivotal roles in the pathogenesis of psoriasis. Although it has been established that Sirtuin 3 (SIRT3) mediates the inflammatory process, the underlying mechanisms remain largely unclear. Herein, we substantiated that the inhibition or deletion of SIRT3 increased the acetylation level of spliced form of X-box binding protein 1 (XPB1s), enhancing its transcriptional activity and IL-23a production. Pharmacologically inhibition of XBP1s with MKC8866 downregulated the expression of inflammatory cytokines in SIRT3-inhibited or Sirt3-KO BMDMs stimulated by IMQ. Inhibition or knockdown of SIRT3 could exacerbate psoriasis-like skin inflammation in an imiquimod-induced psoriasis-like mouse model. Besides, a decrease in SIRT3 expression was observed in the macrophages of psoriasis patients, which increased the expression and acetylation level of XBP1s. Overall, we provide compelling evidence of the crucial role of SIRT3 in the IL-23 axis in psoriatic inflammation and novel molecular insights into the anti-inflammatory effects of SIRT3.


Assuntos
Dermatite , Psoríase , Sirtuína 3 , Animais , Camundongos , Imiquimode/efeitos adversos , Inflamação , Interleucina-23/metabolismo , Macrófagos/metabolismo , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Sirtuína 3/metabolismo , Receptor 7 Toll-Like/metabolismo , Proteína 1 de Ligação a X-Box/genética
11.
J Exp Med ; 220(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37273177

RESUMO

Inborn errors of the NF-κB pathways underlie various clinical phenotypes in humans. Heterozygous germline loss-of-expression and loss-of-function mutations in RELA underlie RELA haploinsufficiency, which results in TNF-dependent chronic mucocutaneous ulceration and autoimmune hematological disorders. We here report six patients from five families with additional autoinflammatory and autoimmune manifestations. These patients are heterozygous for RELA mutations, all of which are in the 3' segment of the gene and create a premature stop codon. Truncated and loss-of-function RelA proteins are expressed in the patients' cells and exert a dominant-negative effect. Enhanced expression of TLR7 and MYD88 mRNA in plasmacytoid dendritic cells (pDCs) and non-pDC myeloid cells results in enhanced TLR7-driven secretion of type I/III interferons (IFNs) and interferon-stimulated gene expression in patient-derived leukocytes. Dominant-negative mutations in RELA thus underlie a novel form of type I interferonopathy with systemic autoinflammatory and autoimmune manifestations due to excessive IFN production, probably triggered by otherwise non-pathogenic TLR ligands.


Assuntos
Autoimunidade , Interferon Tipo I , Fator de Transcrição RelA , Humanos , Autoimunidade/genética , Células Dendríticas , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , NF-kappa B/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo
12.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37373041

RESUMO

Mast cells (MCs) are involved in several immune-related responses, including those in bacterial infections, autoimmune diseases, inflammatory bowel diseases, and cancer, among others. MCs identify microorganisms by pattern recognition receptors (PRRs), activating a secretory response. Interleukin (IL)-10 has been described as an important modulator of MC responses; however, its role in PRR-mediated activation of MC is not fully understood. We analyzed the activation of TLR2, TLR4, TLR7 and Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) in mucosal-like MCs (MLMCs) and peritoneum-derived cultured MCs (PCMCs) from IL-10-/- and wild-type (WT) mice. IL-10-/- mice showed a reduced expression of TLR4 and NOD2 at week 6 and TLR7 at week 20 in MLMC. In MLMC and PCMC, TLR2 activation induced a reduced secretion of IL-6 and TNFα in IL-10-/- MCs. TLR4- and TLR7-mediated secretion of IL-6 and TNFα was not detected in PCMCs. Finally, no cytokine release was induced by NOD2 ligand, and responses to TLR2 and TLR4 were lower in MCs at 20 weeks. These findings indicate that PRR activation in MCs depends on the phenotype, ligand, age, and IL-10.


Assuntos
Interleucina-10 , Interleucina-6 , Animais , Camundongos , Citocinas/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Ligantes , Mastócitos/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor 7 Toll-Like/metabolismo
13.
Ren Fail ; 45(1): 2224890, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37340981

RESUMO

BACKGROUND: In addition to regulating the antiviral response, increased expression of Toll-like receptor 3 (TLR3) in resident renal cells plays a role in developing some forms of glomerulonephritis. TLR3 activation leads to type I interferon (IFN) production, which induces the expression of IFN-stimulated genes (ISGs). However, the role of ISG20 expression in resident renal cells remains unclear. METHODS: Cultured normal human glomerular endothelial cells (GECs) were treated with polyinosinic-polycytidylic acid (poly IC), Escherichia coli lipopolysaccharide (LPS), R848, and CpG (TLR3, TLR4, TLR7, and TLR9 agonists, respectively). The mRNA levels of ISG20, CX3CL1/fractalkine, and CXCL10/IP-10 were measured by quantitative reverse transcription-polymerase chain reaction. ISG20 protein expression was assessed by Western blotting. RNA interference was used to knockdown IFN-ß and ISG20 expression. CX3CL1 protein levels were assessed by enzyme-linked immunosorbent assay. We performed immunofluorescence to examine endothelial ISG20 expression in biopsy specimens from patients with lupus nephritis (LN). RESULTS: In GECs, the expression of ISG20 mRNA and protein was increased by polyIC, not by LPS, R848, or CpG treatment. Moreover, ISG20 knockdown prevented poly IC-induced CX3CL1 expression but had no effect on CXCL10 expression. Intense endothelial ISG20 immunoreactivity was observed in biopsy specimens obtained from patients with proliferative LN. CONCLUSION: In GECs, ISG20 was regulated via TLR3 but not via TLR4, TLR7, or TLR9 signaling. Moreover, ISG20 was involved in regulating CX3CL1 production. In addition to regulating antiviral innate immunity, ISG20 may act as a mediator of CX3CL1 production, thereby inducing glomerular inflammation, particularly in patients with LN.


Assuntos
Exorribonucleases , Nefrite Lúpica , Humanos , Antivirais , Fatores de Restrição Antivirais , Células Cultivadas , Células Endoteliais/metabolismo , Lipopolissacarídeos/farmacologia , Células Mesangiais , Poli I-C/farmacologia , RNA Mensageiro/genética , Receptor 3 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Exorribonucleases/genética
14.
Int Immunopharmacol ; 119: 110238, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37126986

RESUMO

Concanavalin A (ConA) is a plant lectin that can induce immune-mediated liver damage. ConA induced liver damage animal model is a widely accepted model that can mimic clinical acute hepatitis and immune-mediated liver injury in humans. Toll-like receptor-7 (TLR7), a member of the TLR family, plays a key role in pathogen recognition and innate immune activation. The aim of this study was to examine the role of TLR7 in the pathogenesis of ConA-induced liver injury. Acute liver injury was induced by intravenous injection with ConA in WT (wild-type) and TLR7 knockout (KO) mice. Results showed that attenuated liver injury in TLR7-deficient mice, as indicated by increased survival rate, decreased aminotransferase levels, and reduced pathological lesions, was associated with decreased release of pro-inflammatory cytokines in livers. Consistently, significantly decreased proliferation of CD4+ T cell was detected in ConA-stimulated TLR7-deficient splenocytes, but not in CD3/CD28 stimulated TLR7-deficient CD4+ T cells. Moreover, TLR7 deficiency in KCs specifically suppressed the expression of TNF-α (tumor necrosis factor-α). Depletion of KCs abolished the detrimental role of TLR7 in ConA-induced liver injury. Taken together, these results demonstrate that TLR7 can regulate the expression of TNF-α in KCs, which is necessary for the full progression of ConA-induced liver injury.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Células de Kupffer , Receptor 7 Toll-Like , Animais , Humanos , Camundongos , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Concanavalina A/efeitos adversos , Células de Kupffer/metabolismo , Fígado/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
Inflammopharmacology ; 31(3): 1341-1359, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37010718

RESUMO

Diosmin is a flavonoid with promising anti-inflammatory and antioxidant properties. However, it has difficult physicochemical characteristics since its solubility demands a pH level of 12, which has an impact on the drug's bioavailability. The aim of this work is the development and characterization of diosmin nanocrystals using anti-solvent precipitation technique to be used for topical treatment of psoriasis. Results revealed that diosmin nanocrystals stabilized with hydroxypropyl methylcellulose (HPMC E15) in ratio (diosmin:polymer; 1:1) reached the desired particle size (276.9 ± 16.49 nm); provided promising colloidal properties and possessed high drug release profile. Additionally, in-vivo assessment was carried out to evaluate and compare the activities of diosmin nanocrystal gel using three different doses and diosmin powder gel in alleviating imiquimod-induced psoriasis in rats and investigating their possible anti-inflammatory mechanisms. Herein, 125 mg of 5% imiquimod cream (IMQ) was applied topically for 5 consecutive days on the shaved backs of rats to induce psoriasis. Diosmin nanocrystal gel especially in the highest dose used offered the best anti-inflammatory effect. This was confirmed by causing the most statistically significant reduction in the psoriasis area severity index (PASI) score and the serum inflammatory cytokines levels. Furthermore, it was capable of maintaining the balance between T helper (Th17) and T regulatory (Treg) cells. Moreover, it tackled TLR7/8/NF-κB, miRNA-31, AKT/mTOR/P70S6K and elevated the TNFAIP3/A20 (a negative regulator of NF-κB) expression in psoriatic skin tissues. This highlights the role of diosmin nanocrystal gel in tackling imiquimod-induced psoriasis in rats, and thus it could be a novel promising therapy for psoriasis.


Assuntos
Diosmina , MicroRNAs , Nanopartículas , Psoríase , Ratos , Animais , Camundongos , NF-kappa B/metabolismo , Imiquimode/efeitos adversos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor 7 Toll-Like/uso terapêutico , Diosmina/efeitos adversos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/uso terapêutico , Transdução de Sinais , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Pele , Serina-Treonina Quinases TOR/metabolismo , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
16.
J Innate Immun ; 15(1): 517-530, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37040733

RESUMO

Toll-like receptor 7 (TLR7) is an endosomal pathogen-associated molecular pattern (PAMP) receptor that senses single-stranded RNA (ssRNA) and whose engagement results in the production of type I IFN and pro-inflammatory cytokines upon viral exposure. Recent genetic studies have established that a dysfunctional TLR7-initiated signaling is directly linked to the development of inflammatory responses. We present evidence that TLR7 is preferentially expressed by monocyte-derived macrophages generated in the presence of M-CSF (M-MØ). We now show that TLR7 activation in M-MØ triggers a weak MAPK, NFκB, and STAT1 activation and results in low production of type I IFN. Of note, TLR7 engagement reprograms MAFB+ M-MØ towards a pro-inflammatory transcriptional profile characterized by the expression of neutrophil-attracting chemokines (CXCL1-3, CXCL5, CXCL8), whose expression is dependent on the transcription factors MAFB and AhR. Moreover, TLR7-activated M-MØ display enhanced pro-inflammatory responses and a stronger production of neutrophil-attracting chemokines upon secondary stimulation. As aberrant TLR7 signaling and enhanced pulmonary neutrophil/lymphocyte ratio associate with impaired resolution of virus-induced inflammatory responses, these results suggest that targeting macrophage TLR7 might be a therapeutic strategy for viral infections where monocyte-derived macrophages exhibit a pathogenic role.


Assuntos
Monócitos , Receptor 7 Toll-Like , Humanos , Receptor 7 Toll-Like/metabolismo , Monócitos/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Infiltração de Neutrófilos , Citocinas/metabolismo , Macrófagos/metabolismo , Quimiocinas/metabolismo
17.
Inflammopharmacology ; 31(2): 799-812, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36943539

RESUMO

Topical imiquimod based creams are indicated as immune stimulants for papillomas and various skin neoplasms. Imiquimod is considered a TLR7 ligand. These creams are also used in research to induce skin inflammation in mice as a model for psoriasis. We observed that this inflammatory response was not strictly imiquimod dependent and we set out to establish which components drive the proinflammatory effects. To this end, we examined the induction response in a BALB/cJRj mouse model, in which 50 mg of cream is applied to 2 cm2 of skin (125 mg/kg imiquimod-5% W/V, and/or 625 mg/kg isostearic acid-25% W/V). Comparing cream formulations containing isostearic acid, imiquimod and the combination, we observed that isostearic acid causes skin inflammation within 2 days, whereas imiquimod requires up to 5 days for initial signs. Isostearic acid activated an inflammasome response, stimulated release of proinflammatory cytokines and upregulated the IL-23/17 axis. Animals treated with isostearic acid had enlarged livers (+ 40% weight), which was not observed with imiquimod alone. Imiquimod was readily metabolized and cleared from plasma and liver, but was maintained at high levels in the skin throughout the body (200 mM at area of application; 200 µM in untreated skin). Imiquimod application was associated with splenomegaly, cytokine induction/release and initial body weight loss over 3 days. Despite high imiquimod skin levels throughout the animal, inflammation was only apparent in the treated areas and was less severe than in isostearic acid groups. As the concentrations in these areas are well above the 10 µM required for TLR7 responses in vitro, there is an implication that skin inflammation following imiquimod is due to effects other than TLR7 agonism (e.g., adenosine receptor agonism). In brain, isostearic caused no major changes in cytokine expression while imiquimod alone sightly stimulated expression of IL-1ß and CCL9. However, the combination of both caused brain induction of CCL3, -9, CXCL10, -13, IL-1ß and TNFα. The implication of these data is that isostearic acid facilitates the entry of imiquimod or peripherally secreted cytokines into the brain. Our data suggest that psoriaform skin responses in mice are more driven by isostearic acid, than generally reported and that the dose and route used in the model, leads to profound systemic effects, which may complicate the interpretation of drug effects in this model.


Assuntos
Dermatite , Receptor 7 Toll-Like , Animais , Camundongos , Imiquimode/metabolismo , Receptor 7 Toll-Like/metabolismo , Pele/metabolismo , Citocinas/metabolismo , Dermatite/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
18.
Am J Physiol Cell Physiol ; 324(5): C1028-C1038, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36847442

RESUMO

Inappropriate activation of Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain receptors (NOD) is involved in many chronic disorders, including inflammatory bowel disease (IBD). Altered function and/or expression of Na+,K+-ATPase (NKA) and epithelial ion channels are the main cause of electrolyte absorption imbalance in patients with IBD, leading to diarrhea. We aimed to evaluate the effect of TLRs and NOD2 stimulation upon NKA activity and expression in human intestinal epithelial cells (IECs) using RT-qPCR, Western blot, and electrophysiology techniques. TLR2, TLR4, and TLR7 activation inhibited NKA activity [(means ± SE) -20.0 ± 1.2%, -34.0 ± 1.5%, and -24.5 ± 2.0% in T84 cells; and -21.6 ± 7.4%, -37.7 ± 3.5%, and -11.0 ± 2.3% in Caco-2 cells]. On the other hand, activation of TLR5 increased NKA activity (16.2 ± 2.9% in T84 and 36.8 ± 5.2% in Caco-2 cells) and ß1-NKA mRNA levels (21.8 ± 7.8% in T84 cells). The TLR4 agonist synthetic monophosphoryl lipid A (MPLAs) reduced α1-NKA mRNA levels in both T84 and Caco-2 cells (-28.5 ± 3.6% and -18.7 ± 2.8%), and this was accompanied by a decrease in α1-NKA protein expression (-33.4 ± 11.8% and -39.4 ± 11.2%). NOD2 activation upregulated NKA activity (12.2 ± 5.1%) and α1-NKA mRNA levels (6.8 ± 1.6%) in Caco-2 cells. In summary, TLR2, TLR4, and TLR7 activation induce downregulation of NKA in IECs, whereas TLR5 and NOD2 activation has the opposite effect. A comprehensive understanding of the cross talk between TLRs, NOD2, and NKA is of utmost relevance for developing better IBD treatments.


Assuntos
Doenças Inflamatórias Intestinais , Receptor 2 Toll-Like , Humanos , Adenosina Trifosfatases/metabolismo , Células CACO-2 , Células Epiteliais/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína Adaptadora de Sinalização NOD2/farmacologia , RNA Mensageiro/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptores Toll-Like/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
19.
Biol Sex Differ ; 14(1): 11, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36814288

RESUMO

BACKGROUND: The clinical course and outcome of many diseases differ between women and men, with women experiencing a higher prevalence and more severe pathogenesis of autoimmune diseases. The precise mechanisms underlying these sex differences still remain to be fully understood. IRF5 is a master transcription factor that regulates TLR/MyD88-mediated responses to pathogen-associated molecular patterns (PAMPS) in DCs and B cells. B cells are central effector cells involved in autoimmune diseases via the production of antibodies and pro-inflammatory cytokines as well as mediating T cell help. Dysregulation of IRF5 expression has been reported in autoimmune diseases, including systemic lupus erythematosus, primary Sjögren syndrome, and rheumatoid arthritis. METHODS: In the current study, we analyzed whether the percentage of IRF5 positive B cells differs between women and men and assessed the resulting consequences for the production of inflammatory cytokines after TLR7- or TLR9 stimulation. RESULTS: The percentage of IRF5 positive B cells was significantly higher in B cells of women compared to men in both unstimulated and TLR7- or TLR9-stimulated B cells. B cells of women produced higher levels of TNF-α in response to TLR9 stimulation. CONCLUSIONS: Taken together, our data contribute to the understanding of sex differences in immune responses and may identify IRF5 as a potential therapeutic target to reduce harmful B cell-mediated immune responses in women.


Assuntos
Linfócitos B , Fatores Reguladores de Interferon , Fator de Necrose Tumoral alfa , Feminino , Humanos , Masculino , Citocinas/metabolismo , Fatores Reguladores de Interferon/metabolismo , Caracteres Sexuais , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Linfócitos B/metabolismo
20.
Arthritis Rheumatol ; 75(6): 1058-1071, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36622335

RESUMO

OBJECTIVE: Increased Toll-like receptor 7 (TLR-7) signaling leading to the production of type I interferon (IFN) is an important contributor to human systemic lupus erythematosus (SLE). Protein kinase C and casein kinase substrate in neurons 1 (PACSIN1), a molecule that regulates synaptic vesicle recycling, has been linked to TLR-7/TLR-9-mediated type I IFN production in humans and mice, but the underlying mechanism is unknown. We undertook this study to explore the pathogenicity and underlying mechanism of a de novo PACSIN1 missense variant identified in a child with SLE. METHODS: PACSIN1 Q59K de novo and null variants were introduced into a human plasmacytoid dendritic cell line and into mice using CRISPR/Cas9 editing. The effects of the variants on TLR-7/TLR-9 signaling in human and mouse cells, as well as PACSIN1 messenger RNA and IFN signature in SLE patients, were assessed using real-time polymerase chain reaction and flow cytometry. Mechanisms were investigated using luciferase reporter assays, RNA interference, coimmunoprecipitation, and immunofluorescence. RESULTS: We established that PACSIN1 forms a trimolecular complex with tumor necrosis factor receptor-associated factor 4 (TRAF4) and TRAF6 that is important for the regulation of type I IFN. The Q59K mutation in PACSIN1 augments binding to neural Wiskott-Aldrich syndrome protein while it decreases binding to TRAF4, leading to unrestrained TRAF6-mediated activation of type I IFN. Intriguingly, PACSIN1 Q59K increased TLR-7 but not TLR-9 signaling in human cells, leading to elevated expression of IFNß and IFN-inducible genes. Untreated SLE patients had high PACSIN1 expression in peripheral blood cells that correlated positively with IFN-related genes. Introduction of the Pacsin1 Q59K mutation into mice caused increased surface TLR-7 and TRAIL expression in B cells. CONCLUSION: PACSIN1 Q59K increases IFNß activity through the impairment of TRAF4-mediated inhibition of TLR-7 signaling, possibly contributing to SLE risk.


Assuntos
Interferon Tipo I , Lúpus Eritematoso Sistêmico , Criança , Humanos , Camundongos , Animais , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Interferon-alfa , Proteína Quinase C/metabolismo , Fator 4 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Interferon Tipo I/metabolismo , Neurônios/metabolismo , Receptor Toll-Like 9 , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA